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a b s t r a c t

In this paper, free transversal vibrations of a systems of two annular and circular

membranes connected by a Winkler elastic layer are studied using analytical methods

and numerical simulation. At first the motion of each system is described by two

homogeneous partial differential equations. The general solutions of the free vibrations

The natural frequencies and natural mode shapes of vibrations of systems under

consideration are determined. The investigation of free vibrations prove that the

double-membrane systems execute two kinds of vibrations, synchronous and

asynchronous. Then for each system two models formulated by using finite element

representations are prepared. The FE models are manually tuned to reduce the

difference between the natural frequencies of the analytical solutions and the natural

frequencies of the FE model calculations, respectively.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of free transverse vibrations of double-membrane compound systems with elastic constraints is
of great theoretical and practical significance because of wide applications in different disciplines of engineering includ-
ing the pharmaceutical and biotechnological industries, and biomedical devices [1–3]. The membrane systems are
modeled by simple or complex two-dimensional continuous systems. The simplest fundamental model of a compound
two-dimensional system consists of two parallel membranes which are coupled by a Winkler elastic layer. The
fundamental theory of vibration of simple two-dimensional continuous systems (membranes and plates) is elaborated in a
number of monographs by, for example, Ziemba [4], Kaliski [5], Rao [6], and others. Transverse vibrations of circular and
annular membranes are investigated by many researchers. The problem of free vibrations of non-homogeneous circular
and annular membranes is analyzed in [7,8]. In [7] exact solutions for variable density membranes are found by using the
dynamic stiffness method. The classical theory of membranes is used in paper [8] to solve the problem of the free vibration
of composite membranes with discontinuously varying thickness. In paper [9] free vibrations of the polygonal membrane
with a circular core are studied using the vibration theory of membranes. Firstly, the fundamental vibration theory of
compound two-dimensional continuous systems are mainly investigated for double-plate systems. Free transverse
vibrations of the circular double-plate complex systems are developed in works [1,10–13] using the classical vibration
theory of plate. The annular case is investigated in the article [14]. The free vibration problem concerning a mixed
rectangular plate–membrane complex system is solved in paper [15] by using the Navier method. These results are utilized
ll rights reserved.
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by the authors of paper [16] to solve the problem of the optimal control of an elastically connected rectangular
plate–membrane system. The free and forced vibration problems of the rectangular double-membrane compound
continuous system are investigated in works [1,17] by using the vibration theory of membranes. The solution of the same
problem can be found in paper [18]. Moreover, in the monograph [1] the theoretical study related to the circular double-
membrane complex system is developed. In papers [2,3] practical examples of the use of the membrane complex systems
in the pharmaceutical, chemical and biotechnological industries, and biomedical devices are presented. Finite element (FE)
representation is a useful technique to solve various dynamic problems connected with engineering structures [19].
Three-dimensional vibrations of circular and annular plates are analyzed in paper [20] by using finite element method.
In work [21] the FE technique is utilized to elaborate the algorithm to identify the proper distorted mode shapes of the gear
wheel. The solution of the free transverse vibration problem of the elastically connected annular double-membrane
compound system by using FE code is presented in work [22]. Usually an FE model needs to be improved by the so-called
model updating technique, to predict more accurately the dynamics of a structure. A number of efficient model updating
methods are proposed in [23–25]. Paper [26] presents introductory studies that deal with the updating of the FE model of
an annular membrane based on the analytical solution data. This paper continues the recent author’s investigations
concerning the dynamics of structures [27].

The present paper deals with an exact solution of the problem of free transverse vibrations of elastically connected
annular and circular double-membrane compound systems. The complete analytical solutions of undamped free vibrations
of these systems are derived by using the Bernoulli–Fourier method. Then the analytical solutions are treated as
experimental data and they are used to manually tune the FE models of the membrane compound systems.
The preliminary studies focused on the preparation of the appropriate FE models of the double-membrane complex
systems are provided. Finally, the concluding remarks are given and the adequate mode shapes referring to the appropriate
natural frequencies of the systems are illustrated.

2. Formulation of the problem

The objective of this work is the formulation of dynamic models of an elastically connected annular and circular double-
membrane compound systems. The mechanical model of the first system consists of two parallel annular membranes
connected by a massless, linear, elastic layer of a Winkler type. It is assumed that the membranes are thin, homogeneous
and perfectly elastic, and that they have constant thickness [1,17]. The membranes are uniformly tense by adequate
constant tensions applied at the edges of the membranes (see Fig. 1). Small vibrations with no damping are considered. The
partial differential equations of motion for the free transversal vibrations may be written in the following form [1]:

m1 €w1 � S1 Dw1þkðw1 �w2Þ ¼ 0; m2 €w2 � S2 Dw2þkðw2 �w1Þ ¼ 0; (1)

where wi=wi(r, j, t) is the transverse membrane displacement; r, j, t are the polar coordinates and the time; r1, r2, hi are
the membrane dimensions; ri is the mass density; Si is the uniform constant tension per unit length; k is the stiffness
modulus of a Winkler elastic layer;

mi ¼ rihi; _wi ¼
@wi

@t
; Dwi ¼

@2wi

@r2
þ

1

r

@wi

@r
þ

1

r2

@2wi

@j2
; i¼ 1;2: (2)

The boundary and periodicity, and initial conditions are

wiðr1;j; tÞ ¼wiðr2;j; tÞ ¼ 0; wiðr;j; tÞ ¼wiðr;jþ2p; tÞ;
wiðr;j;0Þ ¼wi0ðr;jÞ; _wijðr;j;0Þ ¼ vi0ðr;jÞ; i¼ 1;2: (3)

The second system under consideration consists of two parallel circular membranes connected by a massless, linear,
Winkler elastic layer. The remaining technical assumptions are the same as in the first case. The governing differential
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Fig. 1. The physical model of the system.
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equations for the free transversal vibrations take the form (1). The boundary, periodicity and initial conditions are different
and may be written as

wiðr1;j; tÞ ¼ 0; wið0;j; tÞo1; wiðr;j; tÞ ¼wiðr;jþ2p; tÞ;
wiðr;j;0Þ ¼wi0ðr;jÞ; _wijðr;j;0Þ ¼ vi0ðr;jÞ; i¼ 1;2: (4)

3. Free vibration analysis

The objective of this section is the determination of the complete analytical solutions of free vibrations of the analyzed
systems. To solve the governing equations (1) the Bernoulli–Fourier method (separation of variables) will be employed.

3.1. The annular double-membrane compound system

The general solutions of Eq. (1) can be written in the form [1,4–6]

wiðr;j; tÞ ¼Wiðr;jÞTðtÞ; i¼ 1;2; (5)

TðtÞ ¼ C sinðotÞþD cosðotÞ; (6)

where o is the natural frequency of the system. Substituting solutions (5) into Eq. (1) gives the following expressions:

S1 DW1þðm1o2 � kÞW1þkW2 ¼ 0; S2 DW2þðm2o2 � kÞW2þkW1 ¼ 0: (7a,b)

Now by eliminating the function W2 the equation system (7a,b) takes the form

ðDþk2
1ÞðDþk2

2ÞW1 ¼ 0; (8)

where

k2
1;2 ¼ 0:5

�
½ðm1o2�kÞS�1

1 þðm2o2�kÞS�1
2 �

�
7
�
½ðm1o2�kÞS�1

1 þðm2o2 � kÞS�1
2 �

2 � 4o2½m1m2o2 � ðm1þm2Þk�ðS1S2Þ
�1
�1=2�

: (9)

The coefficients k2
1 and k2

2 are both positive when

o24kðm1þm2Þ=ðm1m2Þ: (10)

Condition (10) guarantees the harmonic type of free vibrations [1]. Assuming the solution of Eq. (8) in the form

W1ðr;jÞ ¼ R1ðrÞUðjÞ (11)

and introducing it into an equation of type (8)

ðDþk2
i ÞW1 ¼ 0; i¼ 1;2 (12)

provides the relations

r2R1
00 þrR1

0 � ðn2 � ðkirÞ
2
ÞR1 ¼ 0; U00 þn2U ¼ 0; n¼ 0;1;2; . . . ; i¼ 1;2; (13a,b)

where

R1
0 ¼

dR1

dr
; U0 ¼

dU

dj :

The general solutions of Eqs. (13a,b) may be written as [1,4–6]

R1inðrÞ ¼ AinJnðkirÞþBinYnðkirÞ; UnðjÞ ¼ An sinðnjÞþBn cosðnjÞ;n¼ 0;1;2; . . . ; i¼ 1;2; (14a,b)

where Jn and Yn are the Bessel functions of the first and second kinds, respectively, Ain and Bin are the constants which will
be determined from the boundary conditions. The mode shape function W1 can be expressed as

W1nðr;jÞ ¼ R1nðrÞUnðjÞ ¼UnðjÞ
X2

i ¼ 1

R1inðrÞ ¼ ½An sinðnjÞþBn cosðnjÞ�
X2

i ¼ 1

½AinJnðkirÞþBinYnðkirÞ�: (15)

In order to obtain the solution for the function W2 it will be assumed to be in the form

W2ðr;jÞ ¼ R2ðrÞUðjÞ (16)

and using the equation system (7a,b) one can determine the mode shape function W2 in the form

W2nðr;jÞ ¼ R2nðrÞUnðjÞ ¼UnðjÞ
X2

i ¼ 1

R2inðrÞ ¼ ½An sinðnjÞþBn cosðnjÞ�
X2

i ¼ 1

di½AinJnðkirÞþBinYnðkirÞ�; (17)

where

di ¼ ðS1k2
i þk�m1o2Þk�1 ¼ kðS2k2

i þk�m2o2Þ
�1; i¼ 1;2: (18)
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The boundary conditions (3) take the form

Riðr1Þ ¼ Riðr2Þ ¼ 0; UðjÞ ¼Uðjþ2pÞ; i¼ 1;2: (19)

Substituting Eqs. (15) and (17) into the boundary conditions (19) gives

A1nJnðk1r1ÞþB1nYnðk1r1ÞþA2nJnðk2r1ÞþB2nYnðk2r1Þ ¼ 0;

A1nJnðk1r2ÞþB1nYnðk1r2ÞþA2nJnðk2r2ÞþB2nYnðk2r2Þ ¼ 0;

d1ðA1nJnðk1r1ÞþB1nYnðk1r1ÞÞþd2ðA2nJnðk2r1ÞþB2nYnðk2r1ÞÞ ¼ 0;

d1ðA1nJnðk1r2ÞþB1nYnðk1r2ÞÞþd2ðA2nJnðk2r2ÞþB2nYnðk2r2ÞÞ ¼ 0: (20)

The existence of a nontrivial solution of Eqs. (20) yields the characteristic determinant

ðd1 � d2Þ
2

Jnðk1r1Þ Ynðk1r1Þ

Jnðk1r2Þ Ynðk1r2Þ

�����
����� � Jnðk2r1Þ Ynðk2r1Þ

Jnðk2r2Þ Ynðk2r2Þ

�����
�����¼ 0: (21)

From relation (21) it is shown that

k1 ¼ k2 ¼ kmn; m¼ 1;2;3; . . . ; n¼ 0;1;2; . . . : (22)

The proper values of the coefficient kmn satisfying the relation (21) may be found from the secular equation [26]

Jnðkmnr1ÞYnðkmnr2Þ � Jnðkmnr2ÞYnðkmnr1Þ ¼ 0: (23)

Then taking into account Eq. (9) the frequency equation can be expressed as [1,17]

o4 � ððm1S2þm2S1Þk
2
mnþðm1þm2ÞkÞðm1m1Þ

�1o2þk2
mnððS1þS2Þkþk2

mnS1S2Þðm1m2Þ
�1
¼ 0: (24)

The natural frequencies of the double-membrane system are determined from the relation

o2
1;2mn ¼ 0:5

�
½ðS2k2

mnþkÞm1þðS1k2
mnþkÞm2�ðm1m2Þ

�18
�
½ðS2k2

mnþkÞm1þðS1k2
mnþkÞm2�

2ðm1m2Þ
�2

�4k2
mn½k

2
mnS1S2þðS1þS2Þk�ðm1m2Þ

�1
�1=2�

; o1mnoo2mn: (25)

The time functions (6) and the mode shapes of free vibrations (15) and (17) are related to the natural frequen-
cies oimn by

TimnðtÞ ¼ Cimn sinðoimntÞþDimn cosðoimntÞ; (26)

W1imnðr;jÞ ¼ R1imnðrÞUnðjÞ ¼ BimnðemnJnðkmnrÞþYnðkmnrÞÞUnðjÞ;
W2imnðr;jÞ ¼ R2imnðrÞUnðjÞ ¼ dimnBimnðemnJnðkmnrÞþYnðkmnrÞÞUnðjÞ; (27)

where

dimn ¼ ðS1k2
mnþk�m1o2

imnÞk
�1 ¼ kðS2k2

mnþk�m2o2
imnÞ

�1; d1mn40; d2mno0; Bimn ¼ 1; i¼ 1;2; (28)

emn ¼ � Ynðkmnr1Þ=Jnðkmnr1Þ: (29)

Finally the general solution of the free vibrations of the system under consideration can be written in the following
form:

w1ðr;j; tÞ ¼
X2

i ¼ 1

X1
m ¼ 1

X1
n ¼ 0

W1imnðr;jÞTimnðtÞ ¼
X1

m ¼ 1

X1
n ¼ 0

�
W1mnðr;jÞ

X2

i ¼ 1

�
K ð1Þimn sinðoimntÞþLð1Þimn cosðoimntÞ

�

þW2mnðr;jÞ
X2

i ¼ 1

ðK ð2Þimn sinðoimntÞþLð2Þimn cosðoimntÞÞ
�
;

w2ðr;j; tÞ ¼
X2

i ¼ 1

X1
m ¼ 1

X1
n ¼ 0

W2imnðr;jÞTimnðtÞ ¼
X1

m ¼ 1

X1
n ¼ 0

�
W1mnðr;jÞ

X2

i ¼ 1

dimn

�
K ð1Þimn sinðoimntÞþLð1Þimn cosðoimntÞ

�

þW2mnðr;jÞ
X2

i ¼ 1

dimnðK
ð2Þ
imn sinðoimntÞþLð2Þimn cosðoimntÞÞ

�
; (30)

where

W1mnðr;jÞ ¼ ðemnJnðkmnrÞþYnðkmnrÞÞsinðnjÞ;
W2mnðr;jÞ ¼ ðemnJnðkmnrÞþYnðkmnrÞÞcosðnjÞ (31)

are the eigenfunctions. The constants Kð1Þimn, K ð2Þimn, Lð1Þimn, Lð2Þimn, (i=1, 2) are determined from the initial conditions. From Eqs. (31)

it can be shown that the nodal lines of the membrane face deflections may be described in the form

sinðnjÞ ¼ 0; cosðnjÞ ¼ 0; emnJnðkmnrÞþYnðkmnrÞ ¼ 0: (32)

The free vibrations of the double-membrane system are realized by synchronous (d1mn40, o1mn) and asynchronous
(d2mno0, o2mn) displacements. It simply means that in modes related to frequencies o1mn, the corresponding points on
the two membranes vibrate in phase with each other, whereas in modes related to frequencies o2mn, they are in antiphase.
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In both cases two mode shapes W1mn and W2mn related to the one coefficient kmn exist [1,17,22]. To solve the initial value
problem the complete knowledge of the orthogonality condition of normal modes of vibration is needed. Then the
orthogonality condition of mode shape functions takes the classical formZ r1

r2

Z 2p

0
W1mnðr;jÞW1slðr;jÞr dr dj¼

Z r1

r2

Z 2p

0
W2mnðr;jÞW2slðr;jÞr dr dj¼

Z 2p

0
sinðnjÞsinðljÞdj

�

Z r1

r2

ðemnJnðkmnrÞþYnðkmnrÞÞðeslJlðkslrÞþYlðkslrÞÞr dr¼

Z 2p

0
cosðnjÞcosðljÞdj

�

Z r1

r2

ðemnJnðkmnrÞþYnðkmnrÞÞðeslJlðkslrÞþYlðkslrÞÞr dr¼
0; mas3nal;

a2
mn; m¼ s4n¼ l;

(
(33)

where

a2
mn ¼

Z r1

r2

Z 2p

0
W2

1mnðr;jÞr dr dj¼
Z r1

r2

Z 2p

0
W2

2mnðr;jÞr dr dj¼
Z 2p

0
sin2
ðnjÞdj

Z r1

r2

ðemnJnðkmnrÞþYnðkmnrÞÞ2r dr

¼

Z 2p

0
cos2ðnjÞdj

Z r1

r2

ðemnJnðkmnrÞþYnðkmnrÞÞ2r dr¼ pe2
mn

Z r1

r2

J2
nðkmnrÞr drþp

Z r1

r2

Y2
n ðkmnrÞr dr; m; n¼ 1;2;3; . . .

(34)

and

a2
m0 ¼

Z 2p

0

Z r1

r2

W2
2m0ðr;jÞr dr dj¼

Z 2p

0
dj
Z r1

r2

ðem0J0ðkm0rÞþY0ðkm0rÞÞ2r dr

¼ 2pe2
m0

Z r1

r2

J2
0ðkm0rÞr drþ2p

Z r1

r2

Y2
0 ðkm0rÞr dr;W1m0ðr;jÞ ¼ 0;

W2m0ðr;jÞ ¼ em0J0ðkm0rÞþY0ðkm0rÞ: (35)

Substituting the general solutions (30) into the initial conditions (3) yields

w10 ¼
X1

m ¼ 1

W2m0ðr;jÞ
X2

i ¼ 1

Lð2Þim0þ
X1

m ¼ 1

X1
n ¼ 1

�
W1mnðr;jÞ

X2

i ¼ 1

Lð1ÞimnþW2mnðr;jÞ
X2

i ¼ 1

Lð2Þimn

�
;

w20 ¼
X1

m ¼ 1

W2m0ðr;jÞ
X2

i ¼ 1

dim0Lð2Þim0þ
X1

m ¼ 1

X1
n ¼ 1

�
W1mnðr;jÞ

X2

i ¼ 1

dimnLð1ÞimnþW2mnðr;jÞ
X2

i ¼ 1

dimnLð2Þimn

�
;

v10 ¼
X1

m ¼ 1

W2m0ðr;jÞ
X2

i ¼ 1

oim0K ð2Þim0þ
X1

m ¼ 1

X1
n ¼ 1

�
W1mnðr;jÞ

X2

i ¼ 1

oimnK ð1ÞimnþW2mnðr;jÞ
X2

i ¼ 1

oimnK ð2Þimn

�
;

v20 ¼
X1

m ¼ 1

W2m0ðr;jÞ
X2

i ¼ 1

dim0oim0K ð2Þim0þ
X1

m ¼ 1

X1
n ¼ 1

�
W1mnðr;jÞ

X2

i ¼ 1

dimnoimnK ð1ÞimnþW2mnðr;jÞ
X2

i ¼ 1

dimnoimnK ð2Þimn

�
:

(36)

To find the unknown constants the following operations are made. At first the relations (36) are multiplied by the
eigenfunctions W1sl or W2sl. Then the results are integrated over the membrane surface and the orthogonality conditions
(34) and (35) are used. Then it is possible to obtain the formulas from which the unknown constants are calculated:

Lð1Þ1mn ¼ ðbmnÞ
�1
Z r1

r2

Z 2p

0
W1mnðr;jÞðw20 � d2mnw10Þr dr dj;

Lð1Þ2mn ¼ ð�bmnÞ
�1
Z r1

r2

Z 2p

0
W1mnðr;jÞðw20 � d1mnw10Þr dr dj; (37)

Lð2Þ1mn ¼ ðbmnÞ
�1
Z r1

r2

Z 2p

0
W2mnðr;jÞðw20 � d2mnw10Þr dr dj;

Lð2Þ2mn ¼ ð�bmnÞ
�1
Z r1

r2

Z 2p

0
W2mnðr;jÞðw20 � d1mnw10Þr dr dj; (38)

Kð1Þ1mn ¼ ðo1mnbmnÞ
�1
Z r1

r2

Z 2p

0
W1mnðr;jÞðv20 � d2mnv10Þr dr dj;

Kð1Þ2mn ¼ ð�o2mnbmnÞ
�1
Z r1

r2

Z 2p

0
W1mnðr;jÞðv20 � d1mnv10Þr dr dj; (39)

Kð2Þ1mn ¼ ðo1mnbmnÞ
�1
Z r1

r2

Z 2p

0
W2mnðr;jÞðv20 � d2mnv10Þr dr dj;
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K ð2Þ2mn ¼ ð�o2mnbmnÞ
�1
Z r1

r2

Z 2p

0
W2mnðr;jÞðv20 � d1mnv10Þr dr dj; (40)

Lð2Þ1m0 ¼ ðbm0Þ
�1
Z r1

r2

Z 2p

0
W2m0ðr;jÞðw20 � d2m0w10Þr dr dj;

Lð2Þ2m0 ¼ ð�bm0Þ
�1
Z r1

r2

Z 2p

0
W2m0ðr;jÞðw20 � d1m0w10Þr dr dj; (41)

Kð2Þ1m0 ¼ ðo1m0bm0Þ
�1
Z r1

r2

Z 2p

0
W2m0ðr;jÞðv20 � d2m0v10Þr dr dj;

Kð2Þ2m0 ¼ ð�o2m0bm0Þ
�1
Z r1

r2

Z 2p

0
W2m0ðr;jÞðv20 � d1m0v10Þr dr dj; (42)

where

bmn ¼ ðd1mn � d2mnÞa
2
mn; bm0 ¼ ðd1m0 � d2m0Þa

2
m0: (43)

In case of initial conditions taken as circular symmetry functions, i.e.

wiðr;j;0Þ ¼wi0ðrÞ; _wijðr;j;0Þ ¼ vi0ðrÞ; i¼ 1;2; (44)

the vibrations of the considered system are realized in the nature of circular symmetry and the corresponding integral
constants are given as

Lð1Þ1mn ¼ Lð1Þ2mn ¼ Lð1Þ1mn ¼ Lð2Þ2mn ¼ 0; K ð1Þ1mn ¼ K ð1Þ2mn ¼ K ð2Þ1mn ¼ K ð2Þ2mn ¼ 0 (45)

and

Lð2Þ1m0 ¼ 2pðbm0Þ
�1
Z r1

r2

ðem0J0ðkm0rÞþY0ðkm0rÞÞðw20 � d2m0w10Þr dr;

Lð2Þ2m0 ¼ � 2pðbm0Þ
�1
Z r1

r2

ðem0J0ðkm0rÞþY0ðkm0rÞÞðw20 � d1m0w10Þr dr; (46)

K ð2Þ1m0 ¼ 2pðo1m0bm0Þ
�1
Z r1

r2

ðem0J0ðkm0rÞþY0ðkm0rÞÞðv20 � d2m0v10Þr dr;

K ð2Þ2m0 ¼ � 2pðo2m0bm0Þ
�1
Z r1

r2

ðem0J0ðkm0rÞþY0ðkm0rÞÞðv20 � d1m0v10Þr dr: (47)

The general solution for the circular symmetry free vibration case of the system can be expressed as

w1ðr;j; tÞ ¼
X1

m ¼ 1

W2m0ðr;jÞ
X2

i ¼ 1

ðK ð2Þim0 sinðoim0tÞþLð2Þim0 cosðoim0tÞÞ;

w2ðr;j; tÞ ¼
X1

m ¼ 1

W2m0ðr;jÞ
X2

i ¼ 1

dim0ðK
ð2Þ
im0 sinðoim0tÞþLð2Þim0 cosðoim0tÞ; (48)

where the integral constants Kð2Þim0 and Lð2Þim0 may be calculated from relations (46) and (47), respectively.

3.2. The circular double-membrane compound system

Like in the previous case the general solutions take the form (5) and (6). For this case it is assumed that r2=0. Then the
boundary conditions (19) become

Riðr1Þ ¼ 0; Rið0Þo1; UðjÞ ¼Uðjþ2pÞ; i¼ 1;2 (49)

and the system equations (20) can be written as [1]

A1nJnðk1r1ÞþA2nJnðk2r1Þ ¼ 0;

d1A1nJnðk1r1Þþd2A2nJnðk2r1Þ ¼ 0; (50)

where as mentioned earlier Jn is the Bessel function of the first kind. The existence of nontrivial solution of Eq. (50)
referring to coefficients k1 and k2 yields the secular equation [1]

ðd2 � d1ÞJnðk1r1ÞJnðk2r1Þ ¼ 0; (51)

from which it is shown that k1=k2=kmn, and eigenvalue kmn may be found from the relation

Jnðkmnr1Þ ¼ 0: (52)

Taking into account the proper values of the coefficient kmn which satisfy Eq. (52), the natural frequencies of the circular
double-membrane system may be determined from Eq. (25). The time functions (6) are related to the natural frequencies
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oimn by Eq. (26). Then the mode shapes of free vibrations of the circular membrane system case are determined from the
relations [1]

W1imnðr;jÞ ¼ R1imnðrÞUnðjÞ ¼ AimnJnðkmnrÞUnðjÞ;
W2imnðr;jÞ ¼ R2imnðrÞUnðjÞ ¼ dimnAimnJnðkmnrÞUnðjÞ; (53)

where

W1mnðr;jÞ ¼ JnðkmnrÞsinðnjÞ; W2mnðr;jÞ ¼ JnðkmnrÞcosðnjÞ (54)

are the eigenfunctions and dimn can be calculated from Eq. (28). Then the nodal lines of the membrane face deflections may
be described as follows [1,5]:

sinðnjÞ ¼ 0; cosðnjÞ ¼ 0; JnðkmnrÞ ¼ 0: (55)

As in the previous case the free vibrations of the circular double-membrane system are realized by synchronous
(in-phase) and asynchronous (out-of-phase) displacements. The general solution of the free vibrations of the system can be
obtained by substituting Eqs. (54) into relations (30). The orthogonality condition of the mode shape functions takes the
form [1] Z r1

0

Z 2p

0
W1mnðr;jÞW1slðr;jÞr dr dj¼

Z r1

0

Z 2p

0
W2mnðr;jÞW2slðr;jÞr dr dj¼

Z 2p

0
sinðnjÞsinðljÞdj

�

Z r1

0
JnðkmnrÞJlðkslrÞr dr¼

Z 2p

0
cosðnjÞcosðljÞdj

Z r1

0
JnðkmnrÞJlðkslrÞr dr¼

0; mas3nal;

a2
mn; m¼ s4n¼ l;

(
(56)

where a2
mn for this case are given by

a2
mn ¼

Z r1

0

Z 2p

0
W2

1mnðr;jÞr dr dj¼
Z r1

0

Z 2p

0
W2

2mnðr;jÞr dr dj¼
Z 2p

0
sin2
ðnjÞdj

Z r1

0
J2
nðkmnrÞr dr

¼

Z 2p

0
cos2ðnjÞdj

Z r1

0
J2
nðkmnrÞr dr¼ p

Z r1

0
J2
nðkmnrÞr dr; m;n¼ 1;2;3; . . . (57)

and

a2
m0 ¼

Z 2p

0

Z r1

0
W2

2m0ðr;jÞr dr dj¼
Z 2p

0
dj
Z r1

0
J2
0ðkm0rÞr dr¼ 2p

Z r1

0
J2
0ðkm0rÞr dr;W1m0ðr;jÞ ¼ 0; W2m0ðr;jÞ ¼ J0ðkm0rÞ:

(58)

Taking into account the initial conditions (4) and eigenfunctions (54), the integral constants Lð1Þimn, Lð2Þimn, Kð1Þimn and K ð2Þimn may
be calculated from Eqs. (37), (38), (39), (40), (41) and (42), respectively. For the circular symmetry free vibration case
of the system the general solution takes the form (48). The integral constants K ð2Þim0 and Lð2Þim0 can be calculated from the
relations [1]

Lð2Þ1m0 ¼ 2pðbm0Þ
�1
Z r1

0
J0ðkm0rÞðw20 � d2m0w10Þr dr;

Lð2Þ2m0 ¼ � 2pðbm0Þ
�1
Z r1

0
J0ðkm0rÞðw20 � d1m0w10Þr dr; (59)

K ð2Þ1m0 ¼ 2pðo1m0bm0Þ
�1
Z r1

0
J0ðkm0rÞðv20 � d2m0v10Þr dr;

K ð2Þ2m0 ¼ � 2pðo2m0bm0Þ
�1
Z r1

0
J0ðkm0rÞðv20 � d1m0v10Þr dr; (60)

where

wiðr;j;0Þ ¼wi0ðrÞ; _wijðr;j;0Þ ¼ vi0ðrÞ; i¼ 1;2 (61)

are the circular symmetry initial conditions of the circular double-membrane system.

4. The finite element representations of the systems

In this section for both systems the finite element (FE) models are formulated to discretize the continuous models given
by the system equations (1). The equations of motion are first transformed into a set of independent or decoupled
differential equations cast in modal generalized coordinates through the use of the mode shapes of the structure.
The response of the system is then received by superimposing the solutions of the decoupled modal equations [19]. To find
the eigenpairs (eigenvalue, eigenvector) connected with the natural frequencies and natural mode shapes of the system,
the block Lanczos method is employed [19].

As mentioned earlier, the FE models are treated as approximations of the exact systems. The quality of the
approximation model depends on the type and density of the mesh and the manner of the application of the tensile forces
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per unit length of the membranes. In this work the impact of the manner of the membranes tensile forces application in the
FE models on the quality of the accurate model approximation is analyzed. In order to compare the continuous systems
analysis results with the FE models solutions, two finite element models for each system are prepared and discussed by
using the ANSYS FE code.
4.1. The annular membrane system

As mentioned earlier the mechanical model of the system under consideration consists of two parallel annular
membranes and a massless, linear, elastic layer of the Winkler type which connects membranes.

The first FE model is realized as follows. The layer is modeled by a finite number of parallel massless springs. The
stiffness modulus kS of each spring can be obtained from the relation [22]

kS ¼
kp0

b
; (62)

where p0 is the area of the membrane large face and b is the number of the springs. The spring-damper element
(combin14) defined by two nodes with the option ‘‘3-D longitudinal’’ is used to realize the elastic layer. The damping
capability of the element are omitted. The four-node quadrilateral element (shell63) with six degrees of freedom in each
node and with the element stiffness option ‘‘Membrane only’’ is used to realize each membrane. The uniform constant
tension is applied to the outer edges of each membrane by using the FE code system standard procedure. The boundary
conditions are realized as follows. All nodes lying on the outer edges of the membranes are simply supported with a
possibility to slide freely in the radial direction, and all nodes lying on the inner edges of the membranes are pinned. The
prepared model shown in Fig. 2 consists of 19,080 shell elements, and 9324 combin elements, respectively.

The second FE model is the same as the first, but the application of the tensile forces is different. To each node lying on
the outer edge is imposed a concentrated tensile force S0j in the radial direction. The proper value of the force is selected
experimentally by numerical simulation. The outer edge of each membrane includes 324 nodes.
tensile 
forces

outer 
edges

inner edges

section of the system 

elastic layer

Fig. 2. Finite element model of the annular membrane system.

elastic layer outer edges

tensile forcessection of the system

Fig. 3. Finite element model of the circular membrane system.
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4.2. The circular membrane system

In this case the Winkler layer is realized as for the previous system. The circular membranes are modeled using
orthotropic shell63 elements with the element stiffness option ‘‘Membrane only’’ and assuming isotropic properties. As in
the previous subsection the first FE model is realized by assuming that constant tension is applied to the outer edges of the
membranes using the FE code system standard procedure. The boundary conditions are realized by pinning all nodes lying
on the outer edges of the membranes but with a possibility to slide freely in the radial direction. The developed model is
displayed in Fig. 3 and it consists of 19,856 shell elements, and 9729 combin elements, respectively.

As in the previous subsection the second FE model is almost the same as the first with the exception of the application
of the tensile force. In this case the uniform constant tension is realized by concentrated tensile forces S�0j imposed in the
radial direction to all nodes lying on the outer edges of the membranes. The proper value of the force is selected
experimentally by numerical simulation. The outer edge of each membrane includes 324 nodes.

5. Numerical analysis

Numerical analysis results of the annular and circular double-membrane compound systems free vibration are obtained
using the models suggested earlier. For each approach, only the first ten natural frequencies and mode shapes are
discussed and compared for these kinds of vibrations. The special case where both membranes are identical and have the
same values of the uniform constant tension is analyzed. The parameters characterizing the systems used in calculations
are shown in Table 1. In Table 1, E and n are Young’s modulus of elasticity and Poisson’s ratio, respectively. In this paper the
continuous models given by the analytical solutions (see Section 3) are considered as exact, compared to the finite element
models, which are treated as approximations of the precise models. The difference between the accurate and the FE models
is defined by [23]

eimn ¼
of

imn �o
c
imn

oc
imn

100%; (63)

where of
imn and oc

imn are the natural frequencies of the FE and exact models, respectively. Eq. (63) is the so-called
frequency error [23–25]. Because of manual tuning the modal assurance criterion (MAC) is not used.

5.1. The continuous models

For both systems the natural frequencies are determined as follows. At first the proper values of the coefficient kmn are
evaluated by numerical calculation from Eqs. (23) (the annular case) and (52) (the circular case), respectively. Then taking
into account the proper values of the factor kmn, the natural frequencies for both systems are determined from the
numerical solution of Eq. (25). The mode shapes of vibrations corresponding to the presented pairs of the natural
frequencies are presented in the appendix. The natural mode shapes of vibration are connected with the eigenfunctions
W1mn and W2mn which are described by Eq. (31) for the annular membrane system, and by Eq. (54) for the circular
membrane system. Taking into account the eigenfunction W1mn the mode shapes of vibration are described by the
expressions [1]

W1imn ¼W1mn; W2imn ¼ dimnW1mn; d1mn ¼ � d2mn ¼ 1; i¼ 1;2 (64)

and the mode shapes connected with the function W2mn can be determined from the relation

W1imn ¼W2mn; W2imn ¼ dimnW2mn: (65)

Both systems under consideration perform two kinds of vibrations: in-phase vibrations (d1mn40) with lower
frequencies o1mn and out-of-phase vibrations (d2mno0) with higher frequencies o2mn (o1mnoo2mn) [1,17]. The deflection
shape of the membrane large face is identical for any pair of natural frequencies oimn. The vibrations are executed by both
membranes with equal absolute values of the amplitudes (d1mn=1, d2mn=�1). In the synchronous vibrations case the
elastic layer is not deformed on the transverse direction.

In Tables 2 and 3 the results of the calculation for the annular membrane system are shown. The values of the natural
frequencies corresponding to the in-phase vibrations of the system are presented in Table 2. The results of the calculation
for the out-of-phase vibrations of the annular membrane system are shown in Table 3. Worth pointing out is the fact that
the appearance sequence of the natural frequencies connected with the adequate mode shapes for both kinds of vibrations
is the same.
Table 1
Parameters characterizing the annular and circular membrane systems.

r1 (m) r2 (m) h1 (m) h2 (m) r1 (kg m�3) r2 (kg m�3) E (Pa) n S1 (N m�1) S2 (N m�1) k (N m�3)

0.5 0.1 0.001 0.001 7.85�103 7.85�103 2.05�1011 0.29 103 103 2.9�104
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Table 3
Natural frequencies of the annular membrane system o2mn (Hz).

n (m) 0 1 2 3 4 5 6

1 19.359 20.468 23.191 26.716 30.5 34.325 38.233

2 31.143 32.034 34.49

Table 4
Natural frequencies of the circular membrane system o1mn (Hz).

n (m) 0 1 2 3 4 5

1 8.667 13.787 18.457 22.948 27.259 31.481

2 19.805 25.194 30.223

3 31.121

Table 5
Natural frequencies of the circular membrane system o2mn (Hz).

n (m) 0 1 2 3 4 5

1 16.195 19.422 22.974 26.716 30.5 34.325

2 24.07 28.668 33.175

3 33.996

Table 6
Natural frequencies of the annular membrane system o1mn (Hz) (the first FE model, in-phase vibrations).

n (m) 0 1 2 3 4 5 6

1 14.331 15.563 18.637 22.542 26.678 30.825 34.928

2 29.138 29.882 32.006

Table 2
Natural frequencies of the annular membrane system o1mn (Hz).

n (m) 0 1 2 3 4 5 6

1 13.697 15.224 18.727 22.948 27.259 31.481 35.702

2 27.978 28.966 31.66
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In Tables 4 and 5 the values of the natural frequencies corresponding to the circular membrane system are presented.
The results of the calculation for the in-phase vibrations of the system are displayed in Table 4. The results of
the calculation for the out-of-phase vibrations of the system are shown in Table 5. As in a previous case the appearance
sequence of the natural frequencies connected with the adequate mode shapes for both kinds of vibrations is the same
(see Tables 4 and 5).

Not all the first ten mode shapes of the annular membrane system have their counterparts in the first ten mode shapes
of the circular membrane system. The set of mode shapes related to the annular case includes the mode shapes connected
with the frequencies o116 and o216. The set of mode shapes related to the circular case includes the mode shapes coupled
with the frequencies o130 and o230. The appearance sequence of the adequate natural frequencies related to the annular
case is different compared with the frequencies related to the circular case (see Tables 2–5).
5.2. The finite element models

In this subsection, numerical solution results are presented using prepared FE models. Tables 6–13 demonstrate the
results achieved for the annular membrane system. The natural frequencies and the frequency errors (see Eq. (63))
obtained by using the first FE model of the annular system are presented in Tables 6–9. In the second FE model case the
proper value of the concentrated tensile force is selected experimentally to minimize the relation defined by Eq. (63).
The results presented in Tables 10–13 are achieved for S0j=9.64 [N].
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Table 8
Frequency error e1mn (%) (the first FE model, in-phase vibrations).

n (m) 0 1 2 3 4 5 6

1 4.6288 2.2267 �0.4806 �1.7692 �2.1314 �2.0838 �2.168

2 4.1461 3.1623 1.0929

Table 9
Frequency error e2mn (%) (the first FE model, out-of-phase vibrations).

n (m) 0 1 2 3 4 5 6

1 0.8885 �0.0879 �1.3626 �2.0886 �2.2787 �2.1792 �2.2075

2 3.166 2.385 0.6872

Table 10
Natural frequencies of the annular membrane system o1mn (Hz) (the second FE model, in-phase vibrations).

n (m) 0 1 2 3 4 5 6

1 14.289 15.518 18.584 22.477 26.602 30.736 34.828

2 29.055 29.796 31.914

Table 11
Natural frequencies of the annular membrane system o2mn (Hz) (the second FE model, out-of-phase vibrations).

n (m) 0 1 2 3 4 5 6

1 19.501 20.416 22.832 26.102 29.736 33.496 37.295

2 32.053 32.72 34.642

Table 12
Frequency error e1mn (%) (the second FE model, in-phase vibrations).

n (m) 0 1 2 3 4 5 6

1 4.3221 1.9311 �0.7636 �2.0525 �2.4102 �2.3665 �2.448

2 3.8495 2.8654 0.8023

Table 13
Frequency error e2mn (%) (the second FE model, out-of-phase vibrations).

n (m) 0 1 2 3 4 5 6

1 0.7335 �0.2541 �1.548 �2.2983 �2.5049 �2.4151 �2.4534

2 2.922 2.1415 0.4407

Table 7
Natural frequencies of the annular membrane system o2mn (Hz) (the first FE model, out-of-phase vibrations).

n (m) 0 1 2 3 4 5 6

1 19.531 20.45 22.875 26.158 29.805 33.577 37.389

2 32.129 32.798 34.727

S. Noga / Journal of Sound and Vibration 329 (2010) 1507–1522 1517
In the in-phase vibrations case the biggest difference between the analytical results and the first FE solution can
be visible for the frequencies o110, o120 and o121, respectively. The best compatibility is obtained for frequency o112.
In the out-of-phase vibrations case the biggest distinction between the analytical results and the first FE solution may be
observable for the frequency o220. The best result is achieved for frequency o221.
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In the second FE model case the calculation results are slightly different compared with the previous case. In the
synchronous vibrations case the biggest difference between the analytical and FE model is observed for the frequencies
o110 and o120. The best compatibility is observed for the frequency o122. In the asynchronous vibrations case the biggest
distinction between the models is noticed for frequency o120.

Worth pointing out is the fact that in the second FE model case the value of the frequency error for the two frequencies
is above 3 percent in the synchronous vibration case (in the first FE model case it is for three frequencies) and in the
asynchronous vibration case the value of the frequency error for all frequencies is below 3 percent (in the first FE model
case for one frequency the frequency error is above 3 percent).

Tables 14–21 show the results obtained for the circular membrane system. The numerical calculations achieved by
using the first FE model of the circular system are displayed in Tables 14–17. The solution results received by using the
second FE model of the circular system are presented in Tables 18–21. These results are achieved for S�0j ¼ 9:68 ½N�
(Figs. 4–9).

In the in-phase vibrations case the value of the frequency error for all natural frequencies of the first FE model is below
1 percent which is a more-than-satisfactory result. In the out-of-phase vibrations case the value of the frequency error
above 1 percent is observable for the frequencies o210, o214 and o221.
Table 14
Natural frequencies of the circular membrane system o1mn (Hz) (the first FE model, in-phase vibrations).

n (m) 0 1 2 3 4 5

1 8.64 13.768 18.455 22.93 27.277 31.536

2 19.84 25.219 30.263

3 31.124

Table 15
Natural frequencies of the circular membrane system o2mn (Hz) (the first FE model, out-of-phase vibrations).

n (m) 0 1 2 3 4 5

1 16.444 19.313 22.776 26.515 30.36 34.248

2 24.292 28.996 33.297

3 33.871

Table 16
Frequency error e1mn (%) (the first FE model, in-phase vibrations).

n (m) 0 1 2 3 4 5

1 �0.3115 �0.1378 �0.0108 �0.0784 0.066 0.1747

2 0.1767 0.0992 0.1324

3 0.0096

Table 17
Frequency error e2mn (%) (the first FE model, out-of-phase vibrations).

n (m) 0 1 2 3 4 5

1 1.5375 �0.5612 �0.8618 �0.7524 1.0316 �0.2243

2 0.9223 1.1441 0.3677

3 �0.3677

Table 18
Natural frequencies of the circular membrane system o1mn (Hz) (the second FE model, in-phase vibrations).

n (m) 0 1 2 3 4 5

1 8.633 13.757 18.44 22.912 27.255 31.51

2 19.824 25.199 30.239

3 31.099
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Table 20
Frequency error e1mn (%) (the second FE model, in-phase vibrations).

n (m) 0 1 2 3 4 5

1 �0.3923 �0.2176 �0.0921 �0.1569 �0.0147 0.0921

2 0.0959 0.0198 0.0529

3 �0.0707

Table 21
Frequency error e2mn (%) (the second FE model, out-of-phase vibrations).

n (m) 0 1 2 3 4 5

1 1.5128 �0.6024 �0.9141 �0.8123 0.9651 �0.2943

2 0.8683 1.0813 0.3014

3 �0.4383

Fig. 4. The mode shapes corresponding to the frequencies: (a) o110, (b) o210, (c) o111 and (d) o211.

Fig. 5. The mode shapes corresponding to the frequencies: (a) o112, (b) o212, (c) o113 and (d) o213.

Table 19
Natural frequencies of the circular membrane system o2mn (Hz) (the second FE model, out-of-phase vibrations).

n (m) 0 1 2 3 4 5

1 16.44 19.305 22.764 26.499 30.34 34.224

2 24.279 28.978 33.275

3 33.847
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Fig. 6. The mode shapes corresponding to the frequencies: (a) o114, (b) o214, (c) o115 and (d) o215.

Fig. 7. The mode shapes corresponding to the frequencies: (a) o116, (b) o216, (c) o120 and (d) o220.

Fig. 8. The mode shapes corresponding to the frequencies: (a) o121, (b) o221, (c) o122 and (d) o222.
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In the second FE model case the results are almost the same as in the first FE model case. In the synchronous vibration
case the value of the frequency error for all frequencies is below 1 percent. In the asynchronous vibrations case the value of
the frequency error above 1 percent is observable for the frequencies o210 and o221, respectively.

Obviously, all the modes attained from FE solution have their counterparts in the corresponding analytical models. It is
surprising that in the annular membranes system case there is less compatibility between the analytical results and the FE
solution results compared with the circular case. Taking into account this phase of search it seems that the second FE
model would be better to simulate the compound membrane systems under investigation. For all FE models with the
exception of the asynchronous vibrations case of the annular membrane systems, it is visible that the biggest differences
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Fig. 9. The mode shapes corresponding to the frequencies: (a) o130 and (b) o230.
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appear in the natural frequencies oi10 (i=1, 2). The main advantage of using the second FE models is the knowledge
regarding the value of the concentrated tensile force applied to all the nodes lying on the outer edges.

6. Conclusions

This paper deals with the free transverse vibrations of an elastically connected annular and circular double-membrane
systems. The exact solution of the free vibrations of the systems under consideration is found by using the separation of
variables method. It is visible that a more complicated solution is found to the annular membrane system case. Numerical
simulations are executed for the special case where both membranes are identical and have the same values of the uniform
constant tension. It is displayed that the systems execute both synchronous and asynchronous motions. Then the exact
solutions of the membrane systems are treated as a testing data and they are used to manually tune the FE models of the
membrane systems. Two FE models of each complex system are investigated. In this paper the impact of the manner of the
membranes tensile forces application in the FE models on the quality of the accurate model approximation is analyzed.
At this stage of search it seems that the second FE model would be better to simulate the analyzed complex membrane
system. The principal profit of using the second FE models is the knowledge related to the value of the concentrated tensile
force applied to all nodes lying on the outer edges of the membranes. It is particularly helpful for the design engineers of
similar structures. The results presented show that in the annular membrane system case there is less compatibility
between the analytical results and the FE solution results compared with the circular system case. To achieve better
compatibility between the tuned FE models and the continuous systems, further research concerning the type and density
of the mesh is needed. Additionally, in the annular membrane system case the research focused on the realization of the
boundary conditions of the FE models is necessitated. It is worth considering investigations focused on the modeling of the
elastic layer connecting membranes while taking into account the mass of the linking layer. The presented and intended
future research in this paper will provide key information for the execution of automatic updating of FE models of the
systems under investigation on the basis of the experimental data.
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